Chapter 2

Basic Integer Division

In this chapter, we introduce some concepts of numbers which are familiar, but
key for our further study. In particular, we try to understand why they work.

e The division algorithm (Section 2.1),
o The greatest common divisor (Section 2.2), and
o The Euclidean algorithm (Section 2.3).

Then we’ll put them together with the Bezout identity (Section 2.4).

2.1 The Division Algorithm

2.1.1 Statement and examples

Let’s start off with the division algorithm. This is the familiar elementary
school fact that if you divide an integer a by a positive integer b, you will
always get an integer remainder r that is nonnegative, but less than b.

Equally important, there is only one possible remainder under these cir-
cumstances.

Theorem 2.1.1 Division Algorithm. For a,b € Z and b > 0, we can
always write a = qb +r with 0 < r < b and q an integer. Moreover, given
a,b there is only one pair q,r which satisfy these constraints. We call the first
element q the quotient, and the second one r the remainder.

Proof. The proof appears below in Subsection 2.1.2. |

Finding ¢ and r is easy in small examples like a = 13,b = 3.
We have 13=4-3+1sog=4and r = 1.

For bigger values it’s nice to have the result implemented in Sage.

divmod (281376 ,29)

(9702, 18)

We can check the correctness of the Sage output by multiplying and adding
back together.

CHAPTER 2. BASIC INTEGER DIVISION 10

9702%29+18

281376

Sage note 2.1.2 Counting begins at zero. There are several things to
note about this early computation. First, note that the answer to divmod came
in parentheses, a so-called tuple data type.

Second, there is another way to approach this computation, more program-
matically so that it’s easier to reuse. What do you think the [@] and [1]
mean?

divmod (281376 ,29)[0] * 29 + divmod (281376,29)[1]

281376

To access the first and second parts of the answer (the quotient and re-
mainder), we use square brackets, asking for the 0th and 1st parts of the tuple
(9702,18)! (This operation is called indexing.) In Python, the programming
language behind Sage (as in many other languages), counting begins at zero.

The discussion in the previous note actually turns out to be an enduring
argument in number theory, too. Do we only care about positive numbers, or
nonnegative ones as well? We saw this in the stamps example, since one could
send a package for free under certain circumstances (campus mail), but might
not care about that case. Similarly, are we required to use at least one of each
type of stamp, or is it okay (as in our problem) to not use one type?

2.1.2 Proof of the Division Algorithm

One neat thing about the division algorithm is that it is not hard to prove but
still uses the Well-Ordering Principle; indeed, it depends on it. The key set is
the set of all possible remainders of a when subtracting multiples of b, which
we call

S={a—-kb|keZ}.

(Note that the set looks the same if we add multiples of b, since k € Z, but for
the purposes of exposition it is easier to think of it as subtraction.)

The object of main interest in the proof will be the nonnegative piece of
S which we will call S = SN N. For example, if a = 13,b = 3, then S =
{...19,16,13,10,7,4,1,—2,—5,...} while 8" ={...19,16,13,10,7,4,1}.

Our strategy will be to apply the well-ordering principle to S’. (It is worth
thinking briefly about why both S and S’ are nonempty.) Give the name 7 to
the smallest element of S’, which must be writeable as » = a — bg (that’s the
definition of being an element of S" C S, after all).

Now let’s briefly suppose by way of contradiction that » > b. In that case
we could subtract b from r, and then r — b € S’ as well. So r would not be the
least element of S’, which is a contradiction. Hence we know that r < b. (Note
that r is the smallest nonnegative number in S’, just as with our intuition
regarding remainders from school.)

We still have to show that r and ¢ are the only numbers fulfilling this
statement. Suppose a = bg’ + r’ for some integers ¢’,r’ where 0 < v’ < b;
clearly if » = 7’ then we can solve a —bg =r =1’ = a—bq’ to get ¢ = ¢’ (since
b > 0), so the only interesting case is if r # /. Without loss of generality, we
can assume r < 1/,

In that case, a —bq = r < ' = a — bq’, which can be rewritten as 0 <
' —r =b(qg—¢'). Since q,¢' € Z, by Fact 1.2.2 ¢ — ¢’ must be at least one if

CHAPTER 2. BASIC INTEGER DIVISION 11

it isn’t zero. But then b=5b-1<7" —r =b(q—¢') or b <r+b < r/, which
contradicts 0 < 7’ < b. Thus ¢ — ¢ =0 and hence g = ¢’ and r =7/,

It’s worth actually trying out the details of this proof with some a and b,
say with @ = 26 and b = 3.

As a scholium (see Exercise 2.5.1) note that if b < 0 there can still be a
positive remainder, but here we would need 0 < r < |b| in the theorem.

2.1.3 Uses of the division algorithm

It’s kind of fun to prove interesting things about powers using the division
algorithm, and likely you did in a previous course. For instance, there is an
interesting pattern in the remainders of integers when dividing by 4. If you
are online, evaluate the following Sage cell to see the pattern. (It’s also easy
to just get the remainders of the first ten or so perfect squares by hand.)

for i in [0..10]:
pretty_print(html("The_remainder_of_{}_squared_with_
respect_to_4._is_{}".format(i,divmod(i*2,4)[1]1)))

Sage note 2.1.3 Repeating commands for different input. The syntax
for i in [@..10]: just means we want to do the next command for integers
from 0 to 10. Such a repetition is called a loop.

Another way Python uses to generate the list of different input is the range
command; try substituting range(11) for [@..10] in the Sage cell above. Can
you discover what the difference is between these?

The rest of the command (all the percent symbols and so forth) is mostly
for correct formatting. That includes the indentation in the second line — an
essential part of Python and Sage.

This certainly provides strong numerical evidence for the following propo-
sition. But better than that will be the proof!

Proposition 2.1.4 A perfect square always leaves remainder r =0 or r =1

when divided by 4.

Proof. Using the division algorithm, we can write n = 4¢ + r. What happens

if we square it, (4q + r)??

Algebraically this yields 16¢% + 8¢r + r2. Clearly this is a multiple of 4 plus

r2. So the only possible remainders of n are the remainders of 72, where r is

already known to be less than 4!

Now check these yourself to see that the only possibilities are the ones in the

statement of the proposition. |
One cool thing about this proof is that if we just change the proof from

using n = (4q+7)? to one using n = (mq+7)?, we can essentially do the same

thing for several divisions at once. If the number we divide by is m, then

(mg + r)2 =m?¢* + 2mgr +r* = m(mq2 +2qr) + r2,

hence all that matters for the final remainder is 72

divisible by m.

But we know that there are only m possibilities for r, so it’s easy to check
all their squares. For m = 6, the following cell checks for you if you don’t want
to check them by hand.

, since the rest is already

for i in [0..5]:
pretty_print(html("The_remainder_of_%s._squared_with._
respect_to_6._is_%s"%(i,divmod(i*2,6)[1]1)))

CHAPTER 2. BASIC INTEGER DIVISION 12

This verifies that » = 0,1, 3,4 are the only possible remainders of perfect
squares when you divide by six.

2.2 The Greatest Common Divisor

It seems intuitive that of all the numbers dividing a number (the divisors of
the number), one is biggest. We can carry that idea to two numbers.

Definition 2.2.1 Common Divisors. If we consider the various divisors of
two numbers a and b, we say that d is a common divisor of a and b if d | a
and d | b. If d is the biggest such common divisor, it is called the greatest
common divisor, or ged, of a and b, written d = ged(a, b). %

Example 2.2.2 What are all the common divisors of 6 and 10?7 What is their
ged? O

Remark 2.2.3 What is the greatest common divisor of zero and zero? By de-
finition, there is none (or it is infinity?). Some authors (such as [E.2.1]) simply
don’t allow this case at all; others (like [E.2.4]) define it to be zero without
further comment. As for computation, both SageMath! and Wolfram Alpha?
apparently compute it to be zero (perhaps by The Euclidean Algorithm), while
one online calculator® throws an error.

This text chooses to remain agnostic on this point. However, ring theory
and lattice theory both allow for an alternate definition which naturally yields
zero as the answer; either consult an abstract algebra text, or see all the answers
to this question at Mathematics StackExchange* for some good fireside reading
after you do your homework for this section.

We now come to a great definition-theorem.

Theorem 2.2.4 Characterizing the greatest common divisor. Let a
and b be integers, not both zero. Then the greatest common divisor of a and b
is all of the following:

e The largest integer d such that d | a and d | b. (This is Definition 2.2.1.)

e The number achieved by applying the Euclidean algorithm (a repeated
division algorithm) to a and b. (See Section 2.3.)

o The smallest positive number which can be written as ax + by for some
integers x and y. (See Section 2.4 and Subsection 2.4.2.)

This is amazing, and the first real indication of the power of having multiple
perspectives on a problem. It means that the very theoretical issue of when a
ged exists (and finding it) can be treated as a purely computational problem,
completely independent of finding divisors in the usual sense. And further,
there is a definition purely in terms of addition and multiplication, nothing
more complex.

If you need to actually calculate a gcd, you use the algorithm. If you want
to prove something about it that has to do with dividing, you use the original
definition. And if you need to prove something about it where division is hard
to use, you use the third characterization. This sort of idea will come up again
and again in this book — that having multiple ways to define something really
helps.

Isagecell.sagemath.org/?z=eJxLTO7RMNAXQAQACUICDA==
2www.wolframalpha.com/input/?i=gcd(0, 0)

Swww.dcode. fr/ged
4math.stackexchange.com/questions/495119/what-1is-gcd0-0

CHAPTER 2. BASIC INTEGER DIVISION 13

2.3 The Euclidean Algorithm

The Euclidean algorithm says that to find the ged of a and b, one performs
the division algorithm until zero is the remainder, each time replacing the
previous divisor by the previous remainder, and the previous number to be
divided (sometimes called dividend) by the previous divisor. The last non-zero
remainder is the ged.

We'll state and prove this momentarily (Algorithm 2.3.3). Let’s try it with
a reasonably sized problem.

Example 2.3.1 Let a = 60 and b = 42.

60=42-1+18
42=18-2+4+6
18=6-34+0
So ged(60,42) = 6. O

This procedure is named after Euclid because of Proposition VII.2° in Eu-

clid’s Elements. There is an amazing complete Java interactive implementation
of all the propositions, by David Joyce®, whose version of this proposition in-
cludes some explanation of Euclid’s background assumptions. In particular,
Euclid basically assumes the Well-Ordering Principle, although of course he
didn’t think of it in such anachronistic terms.
Historical remark 2.3.2 Euclid’s Elements. Euclid, a mathematician in
Alexandria during the Hellenistic era, appears to have written the Elements as
a compendium of rigorous mathematical knowledge. In addition to being the
main geometry textbook in the Western and Islamic worlds for two millennia
(as late a teacher as Charles Dodgson a.k.a. Lewis Carroll extolled its virtues in
print in Buclid and His Modern Rivals”), there are substantial number-theoretic
portions as well. No one really knows how much of the Elements is original
to Euclid, but the work as a whole is monumental and well-organized, despite
some well-known criticisms (see e.g. the discussion in [E.5.5]).

Try the algorithm on your own by hand for the ged of 280 and 126. Or, for
even more practice, try it with ged(2013,1066) and then check your work with
Sage.

gcd (2013,1066)

Algorithm 2.3.3 Euclidean algorithm. 7o get the greatest common divisor
of a and b, perform the division algorithm until you hit a remainder of zero, as
below.

a=bgq +1r
b=riga+12
1 =T2q3 + T3

Tn—3 = Tn—2qn—1 T Tn—1

Th—2 = Tn—1Gn + 0

Salepho.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
6alepho.clarku.edu/~djoyce/java/elements
"books . google. com/books?id=rEUMAAAAYAAT

CHAPTER 2. BASIC INTEGER DIVISION 14

Then the previous remainder, r,_1, is the greatest common divisor.
Proof. First let’s see why this algorithm even terminates. The division algo-
rithm says each r; is less than the previous one, yet they may not be less than
zero. So let’s apply the Well-Ordering Principle to the set of remainders. This
set must have a least positive element, and will be the answer. Another way
to think about it is that since b is finite, there won’t be an infinite number of
steps.
Of course, that just gives a number, with no guarantee it has any connection
to the ged. So consider the set of common divisors d | a and d | b. All such d
also divide

a—qpb=1-a+(—q)-b=mr

So these d also divide ro = b — gor1, and indeed divide all the remainders, even
Tpe1 = Tn—3 — qn_1Tn—2. S0 all common divisors of a and b are divisors of
Tn—1-
On the other hand, if d divides r,,_1, it divides r,,_o = 7,,_1qn, and thus divides
Tn—3 = Tpn—2qn—1 + Tn—1, and so forth. Hence d divides a and b.
So the set of common divisors of a and b are equal to the set of divisors of r,,_1,
so this algorithm really does give the ged. |
As you might expect, the proof makes more sense if you try it out with
actual numbers; for the theoretical view, see Exercise 2.5.14. Especially if you
can find a and b for which the algorithm takes four or five steps, you will gain
some insight.

2.4 The Bezout Identity

2.4.1 Backwards with Euclid

Now, before we get to the third characterization of the ged, we need to be
able to do the Euclidean algorithm backwards. This is sometimes known as the
Bezout identity.

Definition 2.4.1 Bezout identity. A representation of the gcd d of a and
b as a linear combination ax + by = d of the original numbers is called an
instance of the Bezout identity. (This representation is not unique.) O

It is worth doing some examples®. Perhaps you already have gotten one,
probably by trial and error. For instance,

6=-2-60+3-42.

The third characterization in Theorem 2.2.4 implies that doing this is al-
ways possible; ged(a,b) = ax + by for some integers x and y. Doing the
Fuclidean algorithm backwards is one way to obtain this.

Example 2.4.2 Sometimes it helps visually when starting to write the Euclid-
ean algorithm down one side of a table, and then go up the other side of the
table to obtain an instance of the Bezout identity.

Here’s an example with the ged of 8 and 5; follow it from top left to the
bottom and then back up the right side. The middle column provides the
necessary rewriting.

8For convenience, all examples will be in the form d = za + yb, putting the coefficients
first, even though we state this in the other order. The habit of using the letters a, b,d and
alphabetical order is too hard to break.

CHAPTER 2. BASIC INTEGER DIVISION 15

8=1-5+3|1-8-1-5=3|1=2-3-1-5=2-(8—-1-5)—-1-5=2-8-3-5
5=1-342|1.5-1-3=2|1=1-3-1-2=1-3-1-(5-1-3)=2-3-1-5
3=1-24+1(1-3-1-2=1(1=1-3—-1-2
2=2-140 Go up this column...

So1=2-8—3-5,0r2-84(-3)-5. |

Example 2.4.3 Usually students need a couple of examples of this to get the
way this works, so here is another one. Let’s do it with the gcd of 60 and 42.

60=1-42+18 | 1-60—1-42=18 | 6=1-42—-2-18=1-42—-2-(60—1-42)
42=2-1846 1-42—-2.-18=6 6=1-42-2-18

18=3-64+0 Go up this column...

Simplifying 1 -42 — 2 - (60 — 1 - 42) (the top line on the right), we get 6 =
342 4+ (—2) - 60 again. O

This question of the Bezout identity is implemented in Sage as xgcd(a,b),
because this is also known as the e Xtended Euclidean algorithm.

xgcd (60,42)

(6 , ~2, 3)
Or, 6 = —2-60 4+ 3 - 42, once again.
Example 2.4.4 Try to get the xged/Bezout identity for ged(135,50) using
this algorithm. You should get 5 = 3135 + (—8) - 50. Can you get another

one a different way?
Try the following Sage cell to check that it works.

xged (135,50) [1]1%135 + xgcd (135,50) [2]%50

5
]

Sage note 2.4.5 Remind how to get list elements. Do you remember
what the [1] means? What do you think the [2] means in this context?

Example 2.4.6 Try to get the xged/Bezout identity for ged (1415, 1735) using
this algorithm. Hopefully you get 5 = 103 - 1415 + (—84) - 1735, though it may
take a while! The previous example might help you on your way. O

Historical remark 2.4.7 Bezout and friends. While Eticnne Bézout? did
indeed prove a version of the Bezout identity for polynomials, the basics of
using the extended Euclidean algorithm to solve such equations was known in
Europe to Bachet de Méziriac (see Historical remark 3.5.2) about four hundred
years ago. However, the Indian mathematician Aryabhata about 1500 years
ago in his method later called the Kuttaka'® used essentially the same algo-
rithm, in fact in a manner more amenable to swift and accurate usage than
the one we (and most Western texts) use, with a view toward questions such
as Theorem 3.1.2.

2.4.2 Proving the final characterization

The final characterization of the greatest common divisor (Theorem 2.2.4) is
that it is the least positive integer which can be written ax + by for integers

mathshistory.st-andrews.ac.uk/Biographies/Bezout
10en.wikipedia.org/wiki/Kuttaka

CHAPTER 2. BASIC INTEGER DIVISION 16

x,y. Let’s prove that now.

First, we know there are some positive integers which can be written ax+by
(just use positive z,y, or negative ones if a or b are negative). So, by the Well-
Ordering Principle, we know there is a smallest such positive integer, which
we will call ¢ = au + bv. Let’s also designate the ged of @ and b to be d.

By Proposition 1.2.8, any integer which divides a and b divides any ax + by,
so it divides au + bv = ¢. In particular, since d is a divisor of both a and b, it
must also divide ¢. So d < c.

On the other hand, we know from the backward/extended Euclidean algo-
rithm/Bezout identity that d can be written d = az’ + by’ for some integers z’
and y’. Since c is the smallest such (positive) integer, ¢ < d. Thus we conclude
that d = c.

2.4.3 Other gcd questions

We mentioned earlier there are many such linear combinations for any given
pair a,b. How might we find more than one such representation?

Example 2.4.8 Using Bezout to get another Bezout. We used the
backwards Euclidean algorithm to see that 6 = —2 - 60 4 3 - 42. Let’s use that
to get another.

o Since 6 is itself a divisor of both 60 and 42, let’s pick one (the smaller
one!), 42, and write it as 42 =7 - 6.

e Then we can really write
42=7-6=7-(-2-60+3-42),
since after all we just saw that was a way to represent 6!

o Now we plug this back into the original equation:
6=—-2-60+3-42=-2-60+3-(7-6)
=-2-60+3-(7-(—2-60+3-42))

If we simplify it out, that means 6 = —44 - 60 + 63 - 42, which is indeed correct!
O

So, substituting a Bezout identity into itself yields more and more such
identities. How many such identities are there? Is there a general form?

Another interesting question is that some gecds of large numbers are very
easy to compute. What makes finding ged (42000, 60000) so easy? If you're in
a classroom, this is a perfect time to discuss.

On a related note, if ged(a, b) = d, could you make a guess as to a formula
for ged(ka, kb) (for k > 0)? Can you prove it in Exercise 2.5.167 (Hint: here
is where our original definition or the Bezout version could be useful.)

2.4.4 Relatively prime

There is one final thing that the linear combination version of the ged can
give us. It is something you may think is familiar, but which can arise very
naturally from the Bezout identity.

Consider the smallest possible greatest common divisor, which is one. Un-
der what circumstances would a and b have ged(a,b) = 1?7 By our characteri-
zation, it is precisely when you can write az 4+ by = 1 for some integers x and

Y.

CHAPTER 2. BASIC INTEGER DIVISION 17

Think about this, though; if the gcd of a and b is 1, then we could write any
integer as a (linear) combination of a and b! This is a property I think people
would have come up with no matter how the development of mathematics had
gone; namely, identifying pairs of integers such that you can write any number
as a (linear) combination of them.

Definition 2.4.9 Relatively Prime. If the greatest common divisor of two
numbers is one, we call them relatively prime numbers or coprime numbers.

Later, we will need to have a term for the situation where, in a collection
of several integers, all possible pairs are relatively prime. We will call this
mutually coprime, coprime in pairs, or an analogous term. %

Proposition 2.4.10 Here are two interesting facts about coprime integers a
and b:

e Ifa|candb]|c, then ab]| c.

e Ifalbe, then a| c.
Proof. The first is not too hard to prove, if you think in terms of Bezout. It
does need a little cleverness.

¢ Remember that 1 = ax + by for some z,y, by definition of being coprime.
e So ¢ = cax + cby.

e Now write ¢ = kb and ¢ = fa, and substitute them in the opposite parts
of the previous line.

o This gives ¢ = (kb)ax+ (¢a)by, and ab definitely divides both parts of this,
so it divides the whole thing by our earlier proposition about divisibility.

We leave the second as an exercise (Exercise 2.5.19). |

It’s also useful to try to find counterezamples! Can you find an example
where ged(a,b) # 1, a | ¢ and b | ¢, but ab does not divide ¢? (See Exer-
cise 2.5.20.)

2.5 Exercises

1. Try stating and proving the division algorithm (Theorem 2.1.1) but for
b<0.

2. Can you find an n such that the possible remainders of a perfect square
when divided by n are all numbers between zero and n — 1?7 If you can,
how many different such n can you find? If not, can you prove there are
none?

3. Write the ged of 3 and 4 as a linear combination of 3 and 4 in three
different ways. (Hint: trial and error.)

4. You can define the gcd of more than two numbers as the greatest integer
dividing all of the numbers in your set. So, for instance, ged(20, 30, 70) =
10. Calculate the ged of some hard-looking sets of three numbers by listing
divisors.

