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! Analyze and sketch a space curve given by a 
vector-valued function. 

! Extend the concepts of limits and continuity 
to vector-valued functions. 

Objectives  

4 

Space Curves and Vector-Valued 
Functions 

5 

Space Curves and Vector-Valued Functions 

A plane curve is defined as the set of ordered pairs (f(t), g(t))  
together with their defining parametric equations 

 x = f(t) and y = g(t) 

where f and g are continuous functions of t on an interval I.  

6 

This definition can be extended naturally to three-dimensional 
space as follows. 

A space curve C is the set of all ordered triples (f(t), g(t), h(t)) 
together with their defining parametric equations 
    

 x = f(t),    y = g(t),   and   z = h(t) 

where f, g and h are continuous functions of t on an interval I. 

A new type of function, called a vector-valued function, is  
introduced. This type of function maps real numbers to 
vectors. 

Space Curves and Vector-Valued Functions 
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    A 

Space Curves and Vector-Valued Functions 
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Technically, a curve in the plane or in space consists of a  
collection of points and the defining parametric equations.  

Two different curves can have the same graph.  

For instance, each of the curves given by 

  r(t) = sin t i + cos t j      and      r(t) = sin t2 i + cos t2 j 

has the unit circle as its graph, but these equations do not  
represent the same curve—because the circle is traced out  
in different ways on the graphs. 

Space Curves and Vector-Valued Functions 
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Be sure you see the distinction between the vector-valued  
function r and the real-valued functions f, g, and h.  

All are functions of the real variable t, but r(t) is a vector,  
whereas f(t), g(t), and h(t) are real numbers (for each specific  
value of t). 

Space Curves and Vector-Valued Functions 
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Vector-valued functions serve dual roles in the representation 
of curves.  

By letting the parameter t represent time, you can use a 
vector-valued function to represent motion along a curve.  

Or, in the more general case, you can use a vector-valued 
function to trace the graph of a curve. 

Space Curves and Vector-Valued Functions 
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In either case, the terminal point of the position vector r(t) 
coincides with the point (x, y) or (x, y, z) on the curve given 
by the parametric equations, as shown in Figure 12.1. 

Figure 12.1 

Space Curves and Vector-Valued Functions 

12 

The arrowhead on the curve indicates the curve’s orientation 
by pointing in the direction of increasing values of t. 

Unless stated otherwise, the domain of a vector-valued 
function r is considered to be the intersection of the domains 
of the component functions f, g, and h. 

For instance, the domain of  
is the interval (0, 1]. 

Space Curves and Vector-Valued Functions 
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Sketch the plane curve represented by the vector-valued 
function 
     r(t) = 2cos t i – 3sin t j,      0 ! t ! 2!.      Vector-valued function 

Solution: 
From the position vector r(t), you can write the parametric 
equations x = 2cos t and y = –3sin t. 

Solving for cos t and sin t and using the identity 
cos2 t + sin2 t = 1 produces the rectangular equation 

            
           Rectangular equation 

Example 1 – Sketching a Plane Curve 

14 

The graph of this rectangular equation is the ellipse shown 
in Figure 12.2.  

The curve has a clockwise orientation. 

That is, as t increases from 0 to 2!, 
the position vector r(t) moves clockwise,  
and its terminal point traces the ellipse. 

Figure 12.2 

cont’d 
Example 1 – Solution 

15 

Limits and Continuity 

16 

Limits and Continuity 

17 

If r(t) approaches the vector L as t " a, the length of the 
vector r(t) – L approaches 0. That is,  
||r(t) – L|| " 0        as       t " a. 
This is illustrated graphically in Figure 12.6. 

Figure 12.6 

Limits and Continuity 
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Limits and Continuity 
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Discuss the continuity of the vector-valued function given by 
 r(t) = ti + aj + (a2 – t2)k   a is a constant. 

at t = 0. 

Solution: 
As t approaches 0, the limit is 

Example 5 – Continuity of Vector-Valued Functions 

20 

Because 

 r(0) = (0)i + (a)j + (a2)k 
                  = aj + a2k 

you can conclude that r is continuous at t = 0. 

By similar reasoning, you can conclude that the vector-valued 
function r is continuous at all real-number values of t. 

Example 5 – Solution 
cont’d 

21 

Differentiation and Integration 
of Vector-Valued Functions 
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12.2 

22 

! Differentiate a vector-valued function. 

! Integrate a vector-valued function. 

Objectives 

23 

Differentiation of Vector-Valued 
Functions 

24 

Differentiation of Vector-Valued Functions 

The definition of the derivative of a vector-valued function 
parallels the definition given for real-valued functions. 



25 

Differentiation of Vector-Valued Functions 

Differentiation of vector-valued functions can be done on a 
component-by-component basis. 

To see why this is true, consider the function given by 
r(t) = f(t)i + g(t)j. 

26 

Differentiation of Vector-Valued Functions 

Applying the definition of the derivative produces the 
following. 

This important result is listed in the theorem 12.1. 
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Note that the derivative of the vector-valued function r is 
itself a vector-valued function.                                                                             

You can see from Figure 12.8                                                               
that r#(t) is a vector tangent to                                                                           
the curve given by r(t) and                                                                   
pointing in the direction of                                                                
increasing t-values. 

Figure 12.8 

Differentiation of Vector-Valued Functions 
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Differentiation of Vector-Valued Functions 
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Example 1 – Differentiation of Vector-Valued Functions 

For the vector-valued function given by r(t) = ti + (t2 + 2)j, 
find r#(t). Then sketch the plane curve represented by r(t), 
and the graphs of r(1) and r#(1). 

Solution: 
Differentiate on a component-by-component basis to obtain 

r#(t) = i + 2t j.    Derivative 

From the position vector r(t), you can write the parametric 
equations x = t and y = t2 + 2.  

The corresponding rectangular equation is y = x2 + 2. 
When t = 1, r(1) = i + 3j and r#(1) = i + 2j. 

30 

Example 1 – Solution 

In Figure 12.9, r(1) is drawn starting at the origin, and r#(1) 
is drawn starting at the terminal point of r(1). 

Figure 12.9 

cont’d 
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Differentiation of Vector-Valued Functions 

The parametrization of the curve represented by the  
vector-valued function 

r(t) = f(t)i + g(t)j + h(t)k 
is smooth on an open interval "  if f#, g#, and h# are 
continuous on "  and r#(t) $ 0 for any value of t in the 
interval ". 

32 

Example 3 – Finding Intervals on Which a Curve Is Smooth 

Find the intervals on which the epicycloid C given by 
     r(t) = (5cos t – cos 5t)i + (5sin t – sin 5t)j,  0 ! t ! 2! 
is smooth. 

Solution: 

The derivative of r is 

r#(t) = (–5sin t + 5sin 5t)i + (5cos t – 5cos 5t)j. 

In the interval [0, 2!], the only values of t for which 

 r#(t) = 0i + 0j 
are t = 0, !/2, !, 3!/2, and 2!. 

33 

Example 3 – Solution 

Therefore, you can conclude that C is smooth in the  
intervals  

as shown in Figure 12.10. 

In Figure 12.10, note that the                                                                    
curve is not smooth at points                                                                            
at which the curve makes                                                                         
abrupt changes in direction.                                                                            

Such points are called cusps                                               
or nodes. 

Figure 12.10 

cont’d 

34 

Differentiation of Vector-Valued Functions 

35 

Example 4 – Using Properties of the Derivative 

For the vector-valued functions given by 

find 

 a. Dt[r(t) . u(t)] 

and 

 b. Dt[u(t) " u#(t)]. 

36 

Example 4(a) – Solution 

Because                            and u#(t) = 2ti – 2j, you have 
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Example 4(b) – Solution 

Because u#(t) = 2ti – 2j and u##(t) = 2i, you have 

cont’d 

38 

Integration of Vector-Valued 
Functions 

39 

Integration of Vector-Valued Functions 

The following definition is a rational consequence of the 
definition of the derivative of a vector-valued function. 

40 

The antiderivative of a vector-valued function is a family of 
vector-valued functions all differing by a constant vector C.  

For instance, if r(t) is a three-dimensional vector-valued 
function, then for the indefinite integral !r(t) dt, you obtain 
three constants of integration 

where F!(t) = f(t), G!(t) = g(t), and H!(t) = h(t). 
These three scalar constants produce one vector constant 
of integration,  
!r(t) dt = [F(t) + C1]i + [G(t) + C2]j + [H(t) + C3]k 

Integration of Vector-Valued Functions 

41 

            = [F(t)i + G(t)j + H(t)k] + [C1i + C2 j + C3k] 
                      = R(t) + C 

where R"(t) = r(t). 

Integration of Vector-Valued Functions 

42 

Example 5 – Integrating a Vector-Valued Function 

Find the indefinite integral !(t i + 3j) dt. 

Solution: 
Integrating on a component-by-component basis produces 
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Velocity and Acceleration 
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44 

! Describe the velocity and acceleration 
associated with a vector-valued function. 

! Use a vector-valued function to analyze 
projectile motion. 

Objectives 

45 

Velocity and Acceleration 

46 

Velocity and Acceleration 

As an object moves along a curve in the plane, the 
coordinates x and y of its center of mass are each functions 
of time t. 

Rather than using the letters f and g to represent these two 
functions, it is convenient to write x = x(t) and y = y(t). 

So, the position vector r(t) takes the form 
  r(t) = x(t)i  + y(t)j. 

47 

To find the velocity and acceleration vectors at a given    
time t, consider a point Q(x(t +   t), y(t +   t)) that is 
approaching the point P(x(t), y(t)) along the curve C given 
by 
r(t) = x(t)i  + y(t)j, as shown in Figure 12.11. 

Figure 12.11 

Velocity and Acceleration 

48 

As   t     0, the direction of the vector      (denoted by  r) 
approaches the direction of motion at time t. 
           r = r(t +   t) – r(t) 

If this limit exists, it is defined as the velocity vector or 
tangent vector to the curve at point P. 

Velocity and Acceleration 
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Note that this is the same limit used to define r'(t). So, the 
direction of r'(t) gives the direction of motion at time t.  

Moreover, the magnitude of the vector r'(t)  

gives the speed of the object at time t. 

Similarly, you can use r''(t) to find acceleration. 

Velocity and Acceleration 

50 

Velocity and Acceleration 

51 

For motion along a space curve, the definitions are similar. 

That is, if r(t) = x(t)i  + y(t)j + z(t)k, you have 

       Velocity = v(t) = r'(t) = x'(t)i + y'(t)j + z'(t)k 

Acceleration = a(t) = r''(t) = x''(t)i + y''(t)j + z''(t)k 

           Speed =  

Velocity and Acceleration 

52 

Find the velocity vector, speed, and acceleration vector of a 
particle that moves along the plane curve C described by 

Solution: 
The velocity vector is 

The speed (at any time) is 

Example 1 – Finding Velocity and Acceleration Along a Plane Curve 
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The acceleration vector is 

Example 1 – Solution 
cont’d 

54 

Projectile Motion 
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You now have the machinery to derive the parametric 
equations for the path of a projectile. 

Assume that gravity is the only force 
acting on the projectile after it is  
launched. So, the motion occurs  
in a vertical plane, which can be  
represented by the xy-coordinate 
system with the origin as a point  
on Earth’s surface, as shown  
in Figure 12.17. 

Figure 12.17 

Projectile Motion 
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For a projectile of mass m, the force due to gravity is  
 F = – mgj  

where the acceleration due to gravity is                               
g = 32 feet per second per second, or                             
9.81 meters per second per second. 

By Newton’s Second Law of Motion, this same force 
produces an acceleration a = a(t), and satisfies the 
equation F = ma. 

Consequently, the acceleration of the projectile is given by 
ma = – mgj, which implies that 

 a = –gj.  

Projectile Motion 

57 

A projectile of mass m is launched from an initial position r0 
with an initial velocity v0. Find its position vector as a 
function of time. 

Solution: 
Begin with the acceleration a(t) = –gj and integrate twice. 

v(t) =  a(t) dt =  –gj dt = –gtj + C1 

r(t) =  v(t) dt =   (–gtj + C1)dt =       gt2j + C1t + C2 

Example 5 – Derivation of the Position Function for a Projectile 
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You can use the facts that v(0) = v0 and r(0) = r0 to solve for 
the constant vectors C1 and C2. 

Doing this produces C1 = v0 and C2 = r0.  

Therefore, the position vector is 

 r(t) =        gt2j + tv0 + r0. 

Example 5 – Solution 
cont’d 

59 Figure 12.18 

In many projectile problems, the constant vectors r0 and v0  
are not given explicitly. 

Often you are given the initial  
height h, the initial speed v0  
and the angle " at which the  
projectile is launched,  
as shown in Figure 12.18. 

Projectile Motion 

60 

From the given height, you can deduce that r0 = hj. 
Because the speed gives the magnitude of the initial 
velocity, it follows that v0 = ||v0|| and you can write 

  v0 = xi  + yj  

      = (||v0|| cos ")i + (||v0|| sin ")j 

      = v0cos "i + v0sin "j. 

Projectile Motion 
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So, the position vector can be written in the form 

   
   =     gt2j + tv0cos "i + tv0sin "j + hj 

     = (v0cos ")ti +  

Projectile Motion 

62 

Projectile Motion 

63 

A baseball is hit 3 feet above ground level at                   
100 feet per second and at an angle of 45° with respect to 
the ground, as shown in Figure 12.19. Find the maximum 
height reached by the baseball. Will it clear a 10-foot-high 
fence located 300 feet from home plate? 

Example 6 – Describing the Path of a Baseball 

Figure 12.19 64 

You are given h = 3, and v0 = 100, and " = 45°. 

So, using g = 32 feet per second per second produces 

Example 6 – Solution 

65 

The maximum height occurs when 

which implies that 

So, the maximum height reached by the ball is 

Example 6 – Solution 
cont’d 

66 

The ball is 300 feet from where it was hit when 

Solving this equation for t produces  

At this time, the height of the ball is  

              = 303 – 288  

    = 15 feet. 

Therefore, the ball clears the 10-foot fence for a home run. 

Example 6 – Solution 
cont’d 



67 

Tangent Vectors and 
Normal Vectors 
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! Find a unit tangent vector at a point on a 
space curve. 

! Find the tangential and normal components 
of acceleration. 

Objectives 

69 

Tangent Vectors and Normal 
Vectors 

70 

Tangent Vectors and Normal Vectors 

71 

Example 1 – Finding the Unit Tangent Vector 

Find the unit tangent vector to the curve given by 
 r(t) = t i + t2 j 
when t = 1. 

Solution:   
The derivative of r(t) is 

So, the unit tangent vector is 

72 

Example 1 – Solution 

When t = 1, the unit tangent vector is 

as shown in Figure 12.20. 

Figure 12.20 

cont’d 
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The tangent line to a curve at a point is the line that 
passes through the point and is parallel to the unit tangent 
vector. 

Tangent Vectors and Normal Vectors 
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Example 2 – Finding the Tangent Line at a Point on a Curve 

Find T(t) and then find a set of parametric equations for the 
tangent line to the helix given by 
      r(t) =  2cos t i + 2sin t j + t k 

 at the point  

Solution:  
The derivative of r(t) is r'(t) = –2sin t i + 2cos t j + k, which     
implies that                                                             

Therefore, the unit tangent vector is 
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Example 2 – Solution 

At the point                                    and the unit tangent 
vector is 

cont’d 

76 

Using the direction numbers 
and the point                                             you can obtain 
the following parametric equations (given with parameter 
s). 

Example 2 – Solution 
cont’d 

77 Figure 12.21 

This tangent line is shown in Figure 12.21. 

Example 2 – Solution 
cont’d 

78 

In Example 2, there are infinitely many vectors that are 
orthogonal to the tangent vector T(t). One of these is the 
vector T'(t) . This follows the property 

T(t) ! T(t)  =  ||T(t)||2 =1             T(t) ! T'(t) = 0        

By normalizing the vector T'(t) , you obtain a special vector 
called the principal unit normal vector, as indicated in the 
following definition. 

Tangent Vectors and Normal Vectors 
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Example 3 – Finding the Principle Unit Normal Vector 

Find N(t) and N(1) for the curve represented by 
      r(t) =  3t i + 2t2 j.  

Solution:  
By differentiating, you obtain 

which implies that the unit tangent vector is 

80 

Example 3 – Solution 

Using Theorem 12.2, differentiate T(t) with respect to t to 
obtain 

cont’d 

81 

Therefore, the principal unit normal vector is 

When t = 1, the principal unit normal                                               
vector is 

as shown in Figure 12.22. 

Figure 12.22 

Example 3 – Solution 
cont’d 

82 

The principal unit normal vector can be difficult to evaluate 
algebraically. For plane curves, you can simplify the 
algebra by finding 

 T(t) = x(t)i + y(t)j                             Unit tangent vector 

and observing that N(t) must be either 

Tangent Vectors and Normal Vectors 

83 

Because                                  it                                                                  
follows that both N1(t) and N2(t)                                                                 
are unit normal vectors.  

The principal unit normal vector N                                                             
is the one that points toward the                                                                                
concave side of the curve, as                                                               
shown in Figure 12.22 

Figure 12.22 

Tangent Vectors and Normal Vectors 
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This also holds for curves in                                                                
space. That is, for an object                                                               
moving along a curve C in                                                                 
space, the vector T(t) points                                                                     
in the direction the object is                                                                           
moving, whereas the vector                                                                
N(t) is orthogonal to T(t) and                                                                         
points in the direction in which                                                                            
the object is turning, as shown                                                                         
in Figure 12.23. 

Figure 12.23 

Tangent Vectors and Normal Vectors 
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Tangential and Normal Components 
of Acceleration 

86 

The coefficients of T and N in the proof of Theorem 12.4 
are called the tangential and normal components of 
acceleration and are denoted by                                                   
aT = Dt [||v||] and aN = ||v||  ||T'||. 

So, you can write  

Tangential and Normal Components of Acceleration 

87 

The following theorem gives some convenient formulas for  
aN and aT. 

Tangential and Normal Components of Acceleration 

88 

Example 5 – Tangential and Normal Components of Acceleration 

Find the tangential and normal components of acceleration 
for the position vector given by r(t) = 3t i – t j + t2 k .  

Solution:  
Begin by finding the velocity, speed, and acceleration. 

    v(t) = r'(t) = 3i – j + 2t k 

    a(t) = r''(t) = 2k 

89 

Example 5 – Solution  

By Theorem 12.5, the tangential component of acceleration 
is 

and because  

the normal component of acceleration is 

cont’d 

90 

Arc Length and Curvature 
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! Find the arc length of a space curve. 

! Use the arc length parameter to describe a 
plane curve or space curve. 

! Find the curvature of a curve at a point on the 
curve. 

! Use a vector-valued function to find frictional 
force. 

Objectives 

92 

Arc Length 

93 

Arc Length 

94 

Find the arc length of the curve given by 

from t = 0 to t = 2, as shown in Figure 12.28. 

Example 1 – Finding the Arc Length of a Curve in Space 

Figure 12.28 

95 

Using x(t) = t, y(t) =   t3/2, and z(t) =   t2, you obtain x!(t) = 1,    
y!(t) = 2t1/2, and z!(t) = t. 

So, the arc length from t = 0 and t = 2 is given by 

Example 1 – Solution 

96 

Arc Length Parameter 
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Arc Length Parameter 

Figure 12.30 
98 

Using the definition of the arc length function and the 
Second Fundamental Theorem of Calculus, you can 
conclude that 

In differential form, you can write 

Arc Length Parameter 

99 

Find the arc length function s(t) for the line segment given 
by 
           r(t) = (3 – 3t)i + 4t j,       0 ! t ! 1 
and write r as a function of the parameter s.                      
(See Figure 12.31.) 

Example 3 – Finding the Arc Length Function for a Line 

Figure 12.31 100 

Because r#(t) = –3i + 4j and 

you have 

Example 3 – Solution 

101 

Using s = 5t (or t = s/5), you can rewrite r using the arc 
length parameter as follows. 

Example 3 – Solution 
cont’d 

102 

Arc Length Parameter 
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Curvature 

104 

An important use of the arc length parameter is to find 
curvature—the measure of how sharply a curve bends. 

For instance, in Figure 12.32 the curve bends more sharply 
at P than at Q, and you can say that the curvature is 
greater at P than at Q. 

Curvature 

Figure 12.32 

105 

You can calculate curvature by calculating the magnitude of 
the rate of change of the unit tangent vector T with respect 
to the arc length s, as shown in Figure 12.33. 

Curvature 

Figure 12.33 106 

A circle has the same curvature at any point. Moreover, the 
curvature and the radius of the circle are inversely related. 
That is, a circle with a large radius has a small curvature, 
and a circle with a small radius has a large curvature. 

Curvature 

107 Figure 12.34 

Show that the curvature of a circle of radius r is K = 1/r. 

Solution:                                                                            
Without loss of generality you can consider the circle to be 
centered at the origin.  
Let (x, y) be any point on the circle and let s be the length 
of the arc from (r, 0) to (x, y) as shown in Figure 12.34.  

Example 4 – Finding the Curvature of a Circle 

108 

By letting # be the central angle of the circle, you can 
represent the circle by 

       r(#) = r cos # i + r sin # j.       #  is the parameter. 

Using the formula for the length of a circular arc s = r#, you 
can rewrite r(#) in terms of the arc length parameter as 
follows. 

Example 4 – Solution cont’d 
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So,                                     , and it follows that                , 
which implies that the unit tangent vector is 

and the curvature is given by 

at every point on the circle. 

Example 4 – Solution cont’d 

110 

Because                          , the first formula implies that 
curvature is the ratio of the rate of change in the tangent 
vector T to the rate of change in arc length. To see that  
this is reasonable, let #t be a “small number.” Then, 

Curvature 

111 

In other words, for a given #s, the greater the length of #T, 
the more the curve bends at t, as shown in Figure 12.35. 

Curvature 

Figure 12.35 

112 

Find the curvature of the curve given by 

Solution:                                                                                
It is not apparent whether this parameter represents arc 
length, so you should use the formula 

    r#(t) = 2i + 2t j – t2k 

Example 5 – Finding the Curvature of a Space Curve 
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Therefore, 

Example 5 – Solution cont’d 

114 

Curvature 
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Let C be a curve with curvature K at point P. The circle 
passing through point P with radius r = 1/K is called the 
circle of curvature if the circle lies on the concave side of 
the curve and shares a common tangent line with the curve 
at point P. 

The radius is called the radius of curvature at P, and the 
center of the circle is called the center of curvature. 

Curvature 

116 

The circle of curvature gives you the curvature K at a point 
P on a curve. Using a compass, you can sketch a circle 
that lies against the concave side of the curve at point P, as 
shown in Figure 12.36. 

If the circle has a radius of r,                                              
you can estimate the curvature to                                                       
be K = 1/r. 

Figure 12.36 

Curvature 
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Find the curvature of the parabola given by                                                                   
at x = 2. Sketch the circle of curvature at (2, 1). 

Solution:                                                                                
The curvature at x = 2 is as follows. 

Example 6 – Finding Curvature in Rectangular Coordinates 

118 

Because the curvature at P(2, 1) is    , it follows that the 
radius of the circle of curvature at that point is 2. 

So, the center of curvature is (2, –1) as shown in  
Figure 12.37. 

[In the figure, note that the curve  
has the greatest curvature at P.] 

Example 6 – Solution 

Figure 12.37 

cont’d 

119 

Curvature 

120 

Find aT and aN for the curve given by 

Solution:                                                                                
From Example 5, you know that 

Therefore, 

and 

Example 7 – Tangential and Normal Components of Acceleration 
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Application 

122 

There are many applications in physics and engineering 
dynamics that involve the relationships among speed, arc 
length, curvature, and acceleration. One such application 
concerns frictional force. 

A moving object with mass m is in contact with a stationary 
object. The total force required to produce an acceleration 
a along a given path is 

The portion of this total force that is supplied by the 
stationary object is called the force of friction. 

Application 

123 

For example, if a car moving with constant speed is 
rounding a turn, the roadway exerts a frictional force that 
keeps the car from sliding off the road. If the car is not 
sliding, the frictional force is perpendicular to the direction 
of motion and has magnitude equal to the normal 
component of acceleration, as shown in Figure 12.39. The 
potential frictional force of a road around a turn can be 
increased by banking the roadway. 

Application 

Figure 12.39 
124 

A 360-kilogram go-cart is driven at a speed of 60 kilometers 
per hour around a circular racetrack of radius 12 meters, as 
shown in Figure 12.40. To keep the cart from skidding off 
course, what frictional force must the track surface exert on 
the tires? 

Example 8 – Frictional Force 

Figure 12.40 
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The frictional force must equal the mass times the normal 
component of acceleration. 
For this circular path, you know that the curvature is 

Therefore, the frictional force is 

Example 8 – Solution 
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Application 
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Application cont’d 


