Vector-Valued Functions
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-Jjectives

B Analyze and sketch a space curve given by a
vector-valued function.

M Extend the concepts of limits and continuity
to vector-valued functions.

-ace Curves and Vector-Valued Functions

A plane curve is defined as the set of ordered pairs (f(t), g(t))
together with their defining parametric equations

x =f(tyand y = g(f)

where fand g are continuous functions of { on an interval /.

Vector-Valued Functions
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Space Curves and Vector-Valued
Functions

-ace Curves and Vector-Valued Functions

This definition can be extended naturally to three-dimensional
space as follows.

A space curve C is the set of all ordered triples (f(t), g(t), h(t))
together with their defining parametric equations

x=f(t), y=g(t), and z=h(t)
where f, g and h are continuous functions of { on an interval /.

A new type of function, called a vector-valued function, is

introduced. This type of function maps real numbers to
vectors.



-ace Curves and Vector-Valued Functions

DEFINITION OF VECTOR-VALUED FUNCTION

A function of the form

r(t) = f(0i + g()j Plane
or

r(0) = f(0i + g0 + hDk Space

is a vector-valued function, where the component functions f, g, and / are
real-valued functions of the parameter 7. Vector-valued functions are sometimes
denoted as r(r) = (f(r), g(r)y or v(r) = (£ (1), g(1). h(1)).

-ace Curves and Vector-Valued Functions

Be sure you see the distinction between the vector-valued
function r and the real-valued functions f, g, and h.

All are functions of the real variable t, but r(f) is a vector,
whereas f(t), g(t), and h(f) are real numbers (for each specific
value of f).

-ace Curves and Vector-Valued Functions

In either case, the terminal point of the position vector r(f)
coincides with the point (x, y) or (x, y, z) on the curve given
by the parametric equations, as shown in Figure 12.1.

Curve in space

)

Curve in a plane g
»/\

Curve C'is traced out by the terminal point
of position vector r(7).

Figure 12.1

-ace Curves and Vector-Valued Functions

Technically, a curve in the plane or in space consists of a
collection of points and the defining parametric equations.

Two different curves can have the same graph.

For instance, each of the curves given by
r(ty=sinti+costj and r(t)=sinf2i+costj
has the unit circle as its graph, but these equations do not

represent the same curve—because the circle is traced out
in different ways on the graphs.

-ace Curves and Vector-Valued Functions

Vector-valued functions serve dual roles in the representation
of curves.

By letting the parameter ¢ represent time, you can use a
vector-valued function to represent motion along a curve.

Or, in the more general case, you can use a vector-valued
function to trace the graph of a curve.

-ace Curves and Vector-Valued Functions

The arrowhead on the curve indicates the curve’s orientation
by pointing in the direction of increasing values of t.

Unless stated otherwise, the domain of a vector-valued
function r is considered to be the intersection of the domains
of the component functions f, g, and h.

For instance, the domain of () =In7i+ /1 —rj + rk
is the interval (0, 1].



-ample 1 — Sketching a Plane Curve

Sketch the plane curve represented by the vector-valued
function

r(f)=2costi—3sintj, 0<t<2m  Vector-valued function
Solution:

From the position vector r(t), you can write the parametric
equations x = 2cos tand y = -3sin t.

Solving for cos t and sin t and using the identity

cos? t + sin? t = 1 produces the rectangular equation
2 2

% + % =L Rectangular equation
13
Limits and Continuity
15

-'nits and Continuity

If r(t) approaches the vector L as t — a, the length of the
vector r(t) — L approaches 0. That is,

[Ir(f)-L|| — 0 as t— a.
This is illustrated graphically in Figure 12.6.

r() As 1 approaches . r(1) approaches the limit L.
For the limit L to exist, it is not necessary that
r(a) be defined or that r(a) be equal to L.

Figure 12.6 17

-ample 1 — Solution

The graph of this rectangular equation is the ellipse shown
in Figure 12.2.

The curve has a clockwise orientation.

That is, as t increases from 0 to 27,

%
4“; 1 "‘ 1 3 '
the position vector r(f) moves clockwise, ; l ;
\

and its terminal point traces the ellipse.

r(1)=2 cos fi—3sin1j

cont'd

The ellipse s traced clockwise as ¢ increases

from 0 to 27,

Figure 12.2

-'nits and Continuity

DEFINITION OF THE LIMIT OF A VECTOR-VALUED FUNCTION

1. Tf r is a vector-valued function such that r(r) = f(1)i + g(1)j. then

limr(f) = [lim f(t)}i + [lim g(t)]j Plane
1—a t—a t—a
provided fand g have limits as t = a.
2. If r is a vector-valued function such that r(r) = f(r)i + g(t)j + h(r)k, then
limr() = {]im f(f)Jl + {lim g(r)JJ + {Iim /’l(t)Jk Space
1—a 1—a 1—a I—a

provided f, g. and /2 have limits as t — a.

-'nits and Continuity

DEFINITION OF CONTINUITY OF A VECTOR-VALUED FUNCTION

A vector-valued function r is continuous at the point given by ¢ = q if the
limit of r(r) exists as t — a and

}gr} r(1) = r(a).

A vector-valued function r is continuous on an interval / if it is continuous
at every point in the interval.




-mple 5 — Continuity of Vector-Valued Functions -am ple 5 — Solution

cont'd

Discuss the continuity of the vector-valued function given by Because
P 2 )
r(t) =ti + aj + (a® - )k ais a constant. K(0) = (0)i + (a)j + (a2)k
att=0. R
= aj + a’k
Solution: you can conclude that r is continuous at t = 0.

As t approaches 0, the limit is
. Rt . . o, By similar reasoning, you can conclude that the vector-valued
lim r(1) = [}5% '}' + [}T& a}' + [}Lmo G )}k function r is continuous at all real-number values of t.

=0i + aj + ¢’k
=aj + a’k.

19 20

i -Jjectives

m Differentiate a vector-valued function.

Differentiation and Integration

. ] - i
of Vector-Valued Eunctions Integrate a vector-valued function.
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- -ferentiation of Vector-Valued Functions

The definition of the derivative of a vector-valued function
parallels the definition given for real-valued functions.

DEFINITION OF THE DERIVATIVE OF A VECTOR-VALUED FUNCTION

The derivative of a vector-valued function r is defined by

Differentiation of Vector-Valued () = i W A0 X0
F u nCtlonS for all ¢ for which the limit exists. If r’(7) exists, then r is differentiable at .

If r’(1) exists for all 7 in an open interval /, then r is differentiable on the
interval 1. Differentiability of vector-valued functions can be extended to closed
intervals by considering one-sided limits.

23 24



-ferentiation of Vector-Valued Functions

Differentiation of vector-valued functions can be done on a
component-by-component basis.

To see why this is true, consider the function given by
r(t) = fit)i + g(t);.

25

-ferentiation of Vector-Valued Functions

Note that the derivative of the vector-valued function r is
itself a vector-valued function.

r(+ AN —-r@)
You can see from Figure 12.8 \
that r'(t) is a vector tangent to
the curve given by r(t) and
pointing in the direction of
increasing t-values.

Figure 12.8

27

-mple 1 — Differentiation of Vector-Valued Functions

For the vector-valued function given by r(t) = ti + (£ + 2)j,
find r'(f). Then sketch the plane curve represented by r(t),
and the graphs of r(1) and r'(1).

Solution:

Differentiate on a component-by-component basis to obtain
r'(t) =i+ 2tj. Derivative

From the position vector r(t), you can write the parametric

equations x =tand y =2 + 2.

The corresponding rectangular equation is y = x2 + 2.

Whent=1,r(1)=i+3jand r'(1) =i+ 2j. 2

-ferentiation of Vector-Valued Functions

Applying the definition of the derivative produces the
following.
r(r + A1) — r(1)

rO =T

= iy LU ADEE g6+ ADj — fOF — g(D]
m
A0 At
+ AN — f o(t + A1) — g
= lim [[f(r A? .f(f)]i + [m Ar)r g(f)]j}
_ ) [+ AD) - f@] ] el +An — (]|,
N {Al/lglo[ At ”l * {Al/lglo[ Ar HJ
=i+ g(nj
This important result is listed in the theorem 12.1 26

-ferentiation of Vector-Valued Functions

THEOREM 12.1 DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

1. If r(1) = f(r)i + g(1)j, where f and g are differentiable functions of #, then

r'(t) = f(ni + g'(0j. Plane
2. It r(r) = f(1)i + g(1)j + h(t)k, where f, g, and h are differentiable functions
of 1, then
l'/([) =f/(l)i + g/([)j + /‘1’(1)]{. Space

28
-am ple 1 — Solution ,
cont'd
In Figure 12.9, r(1) is drawn starting at the origin, and r'(1)
is drawn starting at the terminal point of r(1).
v o) =ti+ (12 +2)
L
EpE e IR
Figure 12.9 30



-ferentiation of Vector-Valued Functions

The parametrization of the curve represented by the
vector-valued function

r(t) = f(t)i + g(t)j + h(t)k
is smooth on an open interval [ if f, g', and h" are
continuous on I and r'(f) # 0 for any value of ¢ in the
interval L.

31

-ample 3 — Solution

Therefore, you can conclude that C is smooth in the
intervals (o. 127) (% 77>V(w. %”) and (%” 277)

as shown in Figure 12.10.

cont'd

In Figure 12.10, note that the
curve is not smooth at points
at which the curve makes
abrupt changes in direction.

£ (1) = (5 cos 1 — cos 51)i + (5 sin £ — sin 51)j

Such points are called cusps | . ... , _
picycloid is not smooth at the points
or nodes_ where it intersects the axes.

Figure 12.10

33

'mple 4 — Using Properties of the Derivative

For the vector-valued functions aiven bv
r(r) = %i —j+Intk and wu(r) =i -2 +k
find
a. D{r(t) - u(t)]
and

b. DJu(t) x u'(t)].

35

-mple 3 — Finding Intervals on Which a Curve Is Smooth

Find the intervals on which the epicycloid C given by
r(t) = (5cos t — cos 5t)i + (5sint—sin 5t)j, Os<t=<2x
is smooth.

Solution:
The derivative of r is

r'(t) = (-5sin t + 5sin 5¢f)i + (5cos t — 5cos 5t)j.

In the interval [0, 27], the only values of t for which
r'(t) = 0i + Oj
are t=0, 7/2, , 37/2, and 2x.

32

-ferentiation of Vector-Valued Functions

THEOREM 12.2 PROPERTIES OF THE DERIVATIVE

Let r and u be differentiable vector-valued functions of 7, let w be a differentiable
real-valued function of ¢, and let ¢ be a scalar.

. Dfer(t)] = er' (1)

- D[r(r) = u(@] =r'(t) £ w'(1)

. Dw(tx(n)] = wt)r'(1) + w’(Dr(1)

- D[r(0) - u(n] = r(r) - w'(r) + r'(0) - u(r)

. Dr() xu(n)] = r(®) x (1) + r'(z) x u(t)

- Difx(w@)] = r'(w(®)w(n)

LIfr() - r(r) = e thenr(z) - v/(£) = 0.

N R W N =

34

-ample 4(a) — Solution

Because r'(1) = f#i + %k and u'(t) = 2fi — 2j, you have
D[r(@) - u@®] = r(®) - w'(t) + r'(1) - u()
1
= <7i —-j+ lnrk) - (210 — 2j)
+ <7%i +%k) (% — 2t + k)

:2+2+(7|)+%

aal
1

36



-ample 4(b) — Solution

cont'd
Because u'(f) = 2fi — 2j and u"(f) = 2i, you have
Du(t) x w(n)] = [u(®) x w(n] + [w'(t) x w'(1)]

i j k
=|r =2t 1|+0

2 0 0
:‘721 l‘i— 2 l‘_+ 12 72[‘k

o of' 2 o2 o
=0i — (—2)j + 41k
=2j + 41k
37

-egration of Vector-Valued Functions

The following definition is a rational consequence of the
definition of the derivative of a vector-valued function.

DEFINITION OF INTEGRATION OF VECTOR-VALUED FUNCTIONS

L If v(1) = f(0i + g(1)j, where f and g are continuous on [a, b], then the
indefinite integral (antiderivative) of r is

jrl/i dr = f/m dt ng dt ‘j Plane

and its definite integral over the interval a = 1 < b is

» b »
j r(r)dr = ff(l)t/l Jg(lhl{|j,

2.1 v(1) = f(0i + g(0j + h(Dk, where £, g, and h are continuous on [a, b],
then the indefinite integral (antiderivative) of r is

erm = lf/tfh dt j.utl) (II‘j + U/,m dt |k Space

and its definite integral over the intervala = 1 < bis

j r(r)dr = J‘/(In/; i+ lf mm I,[h dr |k

i+

i+

i +

39

-egration of Vector-Valued Functions

=[F()i + G(t) + H(OK] + [Cyi + C, j + Ck]
=R(t)+C

where R'(t) = r(t).

41

Integration of Vector-Valued
Functions

38

-egration of Vector-Valued Functions

The antiderivative of a vector-valued function is a family of
vector-valued functions all differing by a constant vector C.

For instance, if r(t) is a three-dimensional vector-valued
function, then for the indefinite integral [r(t) dt, you obtain
three constants of intearation

f(t)dt = F(r) + C,. Jg(l) dt=G@t) + C,, fh(l) di = H(@1) + Cy

where F(t) = f(t), G'(t) = g(t), and H'(t) = h(t).
These three scalar constants produce one vector constant
of integration,

Ir(t) dt = [F(t) + CJli + [G(t) + C,j + [H(t) + Cylk

40

.mple 5 — Integrating a Vector-Valued Function
Find the indefinite integral [(t i + 3j) dt.

Solution:
Integrating on a component-by-component basis produces

J(ri+3j)dr:[—2_i+3zj+c.

42



Velocity and Acceleration

Copyright © Cengage Learning. All rights reserved. 43

Velocity and Acceleration

45

-Iocity and Acceleration

To find the velocity and acceleration vectors at a given
time t, consider a point Q(x(t +21), y(t +2 1)) that is
approaching the point P(x(t), y(t)) along the curve C given
by

r(t) = x(t)i + y(t)j, as shown in Figure 12.11.

Velocity vector Velocity vector -~
attimes -

attime ¢

At—0

()
r(t+Af)

A )
As At 0, S approaches the velocity vector

Figure 12.11 a7

-)jectives

B Describe the velocity and acceleration
associated with a vector-valued function.

B Use a vector-valued function to analyze
projectile motion.

44
-Iocity and Acceleration

As an object moves along a curve in the plane, the

coordinates x and y of its center of mass are each functions

of time t.

Rather than using the letters fand g to represent these two

functions, it is convenient to write x = x(f) and y = y(f).

So, the position vector r(f) takes the form

r(t) = x(0)i + y(t)j. Position vector
46

-Iocity and Acceleration

As At — 0, the direction of the vector PO (denoted byAr)
approaches the direction of motion at time t.

Ar =r(t+ Af) —r(f)

Ar _ r(t + A1) — r(9)
Ar Ar

r(t + A1) — r(9)

lim — =
Ar—0 At Al—0 At

If this limit exists, it is defined as the velocity vector or
tangent vector to the curve at point P.

48



-Iocity and Acceleration

Note that this is the same limit used to define r(t). So, the
direction of r () gives the direction of motion at time t.

Moreover, the magnitude of the vector r(t)

@) =[x + y 0l = V[x' 0] + [y 0]

gives the speed of the object at time t.

Similarly, you can use r"(t) to find acceleration.

49

-Iocity and Acceleration

For motion along a space curve, the definitions are similar.

That is, if r(t) = x(f)i + y(t)j + z(t)k, you have
Velocity = v(t) = r'(t) = x'(t)i + y'(t)j + z'(H)k

Acceleration = a(f) = r'(t) = x"(t)i + y"(t)j + z"()k

speed = [Vl = [r' ()] = VX' O] + [y + [0

51

-am ple 1 — Solution ,
: cont'd

The acceleration vector is
(1) (1) LginLi ! L Acceleration vect
= = ——sIin—1— — =1. cceleration vector
a r B sin B 1 b CcOosS 2J ©
53

-Iocity and Acceleration

DEFINITIONS OF VELOCITY AND ACCELERATION

It x and y are twice-differentiable functions of #, and r is a vector-valued function
given by r(1) = x(1)i + y(r)j, then the velocity vector, acceleration vector, and
speed at time ¢ are as follows.
Velocity = v(r) =r'(t) = x'(0i +y'(j
Acceleration = a(r) =r"() =x"(Ni + y"()j

Speed = [v()| = v ()] = VIO + [y O

50

-nple 1 — Finding Velocity and Acceleration Along a Plane Curve

Find the velocity vector, speed, and acceleration vector of a
particle that moves along the plane curve C described by

ot ‘.
r() = 2 sin 5 i+ 2cos E_]. Position vector

Solution:
The velocity vector is

, r, .t
v(t) =r(t) = cos—i—sin—j.  Velocity vector
2 2
The speed (at any time) is

e o)) = coszé + sin?
52

Projectile Motion

54



-ojectile Motion

You now have the machinery to derive the parametric
equations for the path of a projectile.

Assume that gravity is the only force
acting on the projectile after it is
launched. So, the motion occurs

in a vertical plane, which can be
represented by the xy-coordinate
system with the origin as a point

on Earth’s surface, as shown

in Figure 12.17.

Y v, = Initial velocity

v(r,)
vo=v(0)

a
Initial height

Figure 12.17 55

-nple 5 — Derivation of the Position Function for a Projectile

A projectile of mass m is launched from an initial position r,
with an initial velocity v,. Find its position vector as a
function of time.

Solution:
Begin with the acceleration a(t) = —gj and integrate twice.

v(t) =[a() dt =[—gj dt = —gfj + C,

r(t) =[v(t) ot = [ (~gti + C,)at = 5 g + Cst + C,

57

-ojectile Motion

In many projectile problems, the constant vectors ry and v,
are not given explicitly.

[[¥y|l=v, = initial speed
[|xo|| = h = initial height
Often you are given the initial ¥
height h, the initial speed v,
and the angle 6 at which the
projectile is launched,
as shown in Figure 12.18.

x=||vyllcos 8

y=|lvollsin &
Figure 12.18

59

-ample 5 — Solution

-ojectile Motion

For a projectile of mass m, the force due to gravity is
F=- mgj Force due to gravity

where the acceleration due to gravity is
g = 32 feet per second per second, or
9.81 meters per second per second.

By Newton’s Second Law of Motion, this same force
produces an acceleration a = a(t), and satisfies the
equation F = ma.

Consequently, the acceleration of the projectile is given by
ma = — mgj, which implies that

=—gj. Acceleration of projectile 56

cont'd

You can use the facts that v(0) = vyand r(0) = ryto solve for
the constant vectors C, and C..

Doing this produces C, = vy and C, = r,.
Therefore, the position vector is

1 -
r(t) = -5 thJ + tVO + ro. Position vector

58

-ojectile Motion

From the given height, you can deduce that ry= hj.
Because the speed gives the magnitude of the initial
velocity, it follows that v, = ||v,|| and you can write

Vo=Xi +}j
= (IIVoll cos 8)i + (||, sin 6)j

= v,cos Oi + vysin 6j.

60



!ojectile Motion

So, the position vector can be written in the form

_ L .
() = ) gy vy + 1y Position vector

|
=775 gt + ty,cos Bi + tvysin 6j + hj

. 1 .
= (v,cos O)fi +[/’l + (VO sin 0)t — Eg[Z]J,

61

'mple 6 — Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at

100 feet per second and at an angle of 45° with respect to
the ground, as shown in Figure 12.19. Find the maximum
height reached by the baseball. Will it clear a 10-foot-high
fence located 300 feet from home plate?

63

Figure 12.19

!ample 6 — Solution

The maximum height occurs when
yi() =502 —32t=0
which implies that
. 252

16
=~ 2.21 seconds.

cont'd

So, the maximum height reached by the ball is

_ 252\ | (252

,\,73+50\/§< 16) 16< T )
_ o
8

~ 81 feet. Maximum height when r = 2.21 seconds 65

!ojectile Motion

THEOREM 12.3 POSITION FUNCTION FOR A PROJECTILE

Neglecting air resistance, the path of a projectile launched from an initial height /
with initial speed v, and angle of elevation € is described by the vector function

1
r() = (vycos O)ri + [h + (v, sin O)f — Egrz]j

where g is the acceleration due to gravity.

62
-ample 6 — Solution
You are given h =3, and v, = 100, and 6 = 45°.
So, using g = 32 feet per second per second produces
r(e) = <100 cos %)ri + [3 + (100 sin %)r - 16t2]j
= (50v21)i + (3 + 5021 — 161)j
v(H) = /(1) = 502 + (502 — 321)j.
64
-ample 6 — Solution ,
- cont'd
The ball is 300 feet from where it was hit when
300 = x(1) = 502 1.
Solving this equation for ¢ produces = 3+/2 ~ 4.24 seconds.
At this time, the height of the ball is
y=3+50v2(3/2) - 16(3/2)
=303 - 288
= 15 feet. Height when 7 = 4.24 seconds
Therefore, the ball clears the 10-foot fence for a home run.
66



Tangent Vectors and
Normal Vectors
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Tangent Vectors and Normal

Vectors

'mple 1 — Finding the Unit Tangent Vector

Find the unit tangent vector to the curve given by

r(t) = ti + £
when t=1.

Solution:
The derivative of r(t) is

r'(t) =i+ 2tj.
So, the unit tangent vector is

r'(t)
e ]|

T(t) =

1
= (i + 21j).

V1 + 42

67
69
Derivative of r()
Definition of T(r)
Substitute for r'(7).
71

-Jjectives

B Find a unit tangent vector at a point on a

space curve.

B Find the tangential and normal components

of acceleration.

68

-ngent Vectors and Normal Vectors

DEFINITION OF UNIT TANGENT VECTOR

tangent vector T() at  is defined as

_r
T() = 0l r(r) # 0.

Let C be a smooth curve represented by r on an open interval 1. The unit

!ample 1 — Solution

When t = 1, the unit tangent vector is
T() = =i + 2
7 J

as shown in Figure 12.20.

70

cont'd

r(f) =ti+1%

The direction of the unit tangent vector
depends on the orientation of the curve.

Figure 12.20

72



-ngent Vectors and Normal Vectors -ﬁple 2 — Finding the Tangent Line at a Point on a Curve

The tangent line to a curve at a point is the line that Find T(t) and then find a set of parametric equations for the
passes through the point and is parallel to the unit tangent tangent line to the helix given by
vector. r(t) = 2cos ti + 2sin tj + tk

at the point (ﬁA V2, f)

Solution:
The derivative of r(t) is r'(f) = —2sin ti + 2cos tj + k, which
implies that [[r'(7)|| = 4 sin?7 + 4cos7 + 1 = /3.

Therefore, the unit tangent vector is

() = S

73 [ )] 74

-ample 2 — Solution -ample 2 — Solution

Using the direction numbers a = —v2. b= V2, and ¢ =1,
and the point (x.. y..z,) = (v2. v/2, @/4). you can obtain
the following parametric equations (given with parameter

At the point (v/2,4/2, #/4), 1 = w/4 and the unit tangent s)-
vector is x=x +as=2- J2s

+ 2costj + k). Unit tangent vector

= %(—2 sin ti

5) = (-2 V=t b =V s
- (- i+ 2j+x) 1=z tes =24
_f_ i+ Jj T k. 1
75 26

-ample 2 — Solution v -ngent Vectors and Normal Vectors

This tangent line is shown in Figure 12.21. In Example 2, there are infinitely many vectors that are
_— orthogonal to the tangent vector T(f). One of these is the
e e vector T'(t) . This follows the property

T - T = ITOIP=1 © T@O-T®=0

By normalizing the vector T'(f) , you obtain a special vector
called the principal unit normal vector, as indicated in the

following definition.
DEFINITION OF PRINCIPAL UNIT NORMAL VECTOR
T\\* i\’\‘ Let C be a smooth curve represented by r on an open interval 1. If T'(1) # 0,
(vad) then the principal unit normal vector at 7 is defined as
The tangent line to a curve at a point is —
determincd by the unit tangent veetor at N() = ()
the point IT0)|
Figure 12.21 77 78




-mple 3 — Finding the Principle Unit Normal Vector

Find N(f) and N(1) for the curve represented by
r(f) = 3ti+ 283j.

Solution:
By differentiating, you obtain

r'() =3i+4j and |r'@| = V9 + 1612

which implies that the unit tangent vector is

r'(r)
T() = 77
[l ()]
1
= ﬁ(?ﬁ + 4tj). Unit tangent vector N
-ample 3 — Solution ,
: cont'd
Therefore, the principal unit normal vector is
T 1
N(r) = ﬁ = ﬁ(—él-ti + 3j). Principal unit normal vector
Curve: N
) ) ) r(1) =31+ 2% ¢
When t = 1, the principal unit normal
vector is T N(1) = 1(-4i+3j)
1
N(1) = g(—4i + 3j)
as shown in Figure 12.22. T
T(1) = 33i+4j)
1 1 2 3
The principal unit normal vector points
toward the concave side of the curve
Figure 12.22 81
-ngent Vectors and Normal Vectors
Because v[x()]* + [y(F = L.it
follows that both N, () and N(f) T
are unit normal vectors. g L ¢
N(1) = 1(-4i+ 3j)
The principal unit normal vector N
is the one that points toward the
concave side of the curve, as
shown in Figure 12.22 " .
T(1)=1Gi+4))
1 2 i
The principal unit normal vector points
toward the concave side of the curve.
Figure 12.22
83

-ample 3 — Solution

cont'd
Using Theorem 12.2, differentiate T(t) with respect to t to
obtain
SN 1 o 16t . .
T(1) = T 1612(4']) o7 16t2)3/2(31 + 4tj)
12 . .
= m(—4tl + 3j)
Al /9+ 162 12
Il =12 (9 + 16123 9 + 161
80

-ngent Vectors and Normal Vectors

The principal unit normal vector can be difficult to evaluate
algebraically. For plane curves, you can simplify the
algebra by finding

T(#) = x(O)i + y(b)j

Unit tangent vector

and observing that N(f) must be either

N, (1) = y(i — x(1)j or N, (1) = —y(@i + x(0)j.

82

-ngent Vectors and Normal Vectors

This also holds for curves in
space. That is, for an object q
moving along a curve C in

space, the vector T(f) points

in the direction the object is
moving, whereas the vector

N(t) is orthogonal to T(f) and ‘
points in the direction in which
the object is turning, as shown
in Figure 12.23.

\)

At any point on a curve, a unit normal vector
is orthogonal to the unit tangent vector. The
principal unit normal vector points in the
direction in which the curve is turning.

Figure 12.23
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Tangential and Normal Components
of Acceleration

85

.gential and Normal Components of Acceleration

The following theorem gives some convenient formulas for
ay and ar.

THEOREM 12.5 TANGENTIAL AND NORMAL COMPONENTS
OF ACCELERATION

If (1) is the position vector for a smooth curve C [for which N(7) exists], then
the tangential and normal components of acceleration are as follows.

_ya
vl

v x al -
ay = |v[||T|=a-N= = JVlal? = af
~x = VI Y i

Note that ay = 0. The normal component of acceleration is also called the
centripetal component of acceleration.

ap=Dfv[]=a-T

87

-ample 5 — Solution ,
cont'd

By Theorem 12.5, the tangential component of acceleration
is
v-a 4t

TN T /10 + an

and because

ik
vxa=|[3 —1 2t =—-2i— 6j
0 0 2

the normal component of acceleration is

7||v><aH: V4+36 0 210

an — =
Nl 10 + 47° 10 + 472

89

Tangential component of acceleration

Normal component of acceleration

.gential and Normal Components of Acceleration

THEOREM 12.4 ACCELERATION YECTOR

If r(z) is the position vector for a smooth curve C and N(7) exists, then the
acceleration vector a(t) lies in the plane determined by T(r) and N().

The coefficients of T and N in the proof of Theorem 12.4
are called the tangential and normal components of
acceleration and are denoted by
ar= Dy[lIvl[] and ay = [Iv]| [ITI.
So, you can write

a(f) = apT() + axyN().

86

-Trple 5 — Tangential and Normal Components of Acceleration

Find the tangential and normal components of acceleration
for the position vector given by r(t) = 3ti — tj + 2k .

Solution:
Begin by finding the velocity, speed, and acceleration.

v(t) = r(t) = 3i—j + 2tk

vl = VO + 1 + 42 = V10 + 412

a(t) =r"(t) =2k

88

Arc Length and Curvature
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->jectives
B Find the arc length of a space curve.

B Use the arc length parameter to describe a
plane curve or space curve.

B Find the curvature of a curve at a point on the
curve.

B Use a vector-valued function to find frictional
force.

91

gc Length

THEOREM 12.6 ARC LENGTH OF A SPACE CURVE

If C is a smooth curve given by r(1) = x(1)i + y(1)j + z(r)k, on an interval
[a, b], then the arc length of C on the interval is

‘- f T T DT T 0T i = f el .

93

-<ample 1 — Solution

Using x(t) = t, y(t) = %tw, and z(f) = %tz, you obtain x'(f) = 1,
y'(t) = 262, and z'(t) = t.

So, the arc length from t =0 and t = 2 is given by

s= f COFFVOF TP d Formula for are lengeh
0
2

- f SR
0

Integration tables (Appendix B), Formula 26

= r Vit +2)?—3dt

= [’ t 2 Vi+2? -3~ %ln|(l +2) + V(i +2)7 - 3|]

0

3
2

=2/13-2h(4+ J/13) - 1 +%|n3 ~ 4.816.
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Arc Length

92

-ample 1 — Finding the Arc Length of a Curve in Space

Find the arc length of the curve given by

4 1
l‘(l) =fi+ §I3/2j + El‘zk

from t=0to t = 2, as shown in Figure 12.28.

(1) = ti+ 302

j+ 27k

As t increases from 0 to 2, the vector r(r)
traces out a curve.

94

Figure 12.28

Arc Length Parameter

96



-c Length Parameter

DEFINITION OF ARC LENGTH FUNCTION

Let C be a smooth curve given by r(t) defined on the closed interval [a, b].
Fora < t < b, the arc length function is given by

s(t) = fr e )| du = fr [x()]> + [y )] + [z (w)]? du.

The arc length s is called the arc length parameter. (See Figure 12.30.)

st = j,/h'un]»‘ + Y @P + [P du

97

Figure 12.30

-<ample 3 — Finding the Arc Length Function for a Line

Find the arc length function s(t) for the line segment given
by
r(t) = (3—3t)i + 4tj, 0=<t=<1
and write r as a function of the parameter s.
(See Figure 12.31.)

r()=(3-30i+4j

The line segment from (3, 0) to (0, 4) can
be parametrized using the arc length
parameter .
Figure 12.31 99

-<ample 3 — Solution ot

Using s = 5t (or t = s/5), you can rewrite r using the arc
length parameter as follows.

rs)=(3-%)i+%j 0<s<5

101

-c Length Parameter

Using the definition of the arc length function and the
Second Fundamental Theorem of Calculus, you can
conclude that

ds
E = ”l‘ /(t)” Derivative of arc length tunction

In differential form, you can write
ds = | ()| dt.

-<ample 3 — Solution

Because r'(t) = -3i + 4j and
x|l = V=37 F 4 =5

you have

t

s(t) = f e (u)|| du
0

1
=f5dL¢
0

=5t

-c Length Parameter

THEOREM 12.7 ARC LENGTH PARAMETER

If C is a smooth curve given by

r(s) = x(9)i + y(s)j or r(s) = x(s)i + y(s)j + z(s)k
where s is the arc length parameter, then

)l = 1.

Moreover, if ¢ is any parameter for the vector-valued function r such that
[r ()| = 1, then ¢ must be the arc length parameter.
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Curvature

103

-Jrvatu re

You can calculate curvature by calculating the magnitude of
the rate of change of the unit tangent vector T with respect
to the arc length s, as shown in Figure 12.33.

The magnitude of the rate of change of T
with respect to the arc length is the curvature
of a curve.

Figure 12.33 105

.ample 4 — Finding the Curvature of a Circle

Show that the curvature of a circle of radius ris K= 1/r.

Solution:

Without loss of generality you can consider the circle to be
centered at the origin.

Let (x, y) be any point on the circle and let s be the length
of the arc from (r, 0) to (x, y) as shown in Figure 12.34.

The curvature of a circle is constant.

Figure 12.34 107

-Jrvatu re

An important use of the arc length parameter is to find
curvature—the measure of how sharply a curve bends.

For instance, in Figure 12.32 the curve bends more sharply
at P than at Q, and you can say that the curvature is
greater at P than at Q.

<

Curvature at P is greater than at Q.
Figure 12.32 104

-Jrvatu re

DEFINITION OF CURVATURE

Let C be a smooth curve (in the plane or in space) given by r(s), where s is
the arc length parameter. The curvature K at s is given by

ar

K=
ds

=T ).

-(ample 4 — Solution

A circle has the same curvature at any point. Moreover, the
curvature and the radius of the circle are inversely related.
That is, a circle with a large radius has a small curvature,
and a circle with a small radius has a large curvature.

106

cont'd

By letting 6 be the central angle of the circle, you can
represent the circle by

r(6) =rcos @i+ rsin 0j. 6 is the parameter.
Using the formula for the length of a circular arc s = ré, you
can rewrite r(6) in terms of the arc length parameter as
follows.

s, LS,
r(s) = rcos=i+ rsin=j Arc length s is the parameter.
r r

108



-(ample 4 — Solution

cont'd
So, r'ls) = —sin”i + cos* j, and it follows that r ()] = 1,
which implies that the unit tangent vector is
I (€ 5.
T(s) = I — Syt costi
and the curvature is given by
K =T )] = H 7lcos£i - lsinfj H _1
r r r r r
at every point on the circle.
109

-Jrvature

In other words, for a given As, the greater the length of AT,
the more the curve bends at ¢, as shown in Figure 12.35.

T(t+An

Figure 12.35
1M1
-<ample 5 — Solution conte
_ A+ (4 — 212)j — 4tk
(2 +2)2
g 1662+ 16 — 1612 + 4¢* + 1612
O EEr
22+ 2)
GGEER
2
= 2+ Length of T'(z)
Therefore,
_Irwl 2 .
K= Hr’(t)” = 2+ 2)2- Curvature 13

-Jrvature

THEOREM 12.8 FORMULAS FOR CURVATURE

If Cis a smooth curve given by r(¢), then the curvature K of C at ¢ is given by

_ITl _ v x @]
[l ()] e @lF -

Because [[r' ()| = ds/dt | the first formula implies that
curvature is the ratio of the rate of change in the tangent
vector T to the rate of change in arc length. To see that
this is reasonable, let At be a “small number.” Then,

T() [T(+ A) — T(]/Ar  T( + A — T() AT

dsjdi  [s(t + A1) — s)]/Ar st + Ar) — s(4)  As

110

-ample 5 — Finding the Curvature of a Space Curve

Find the curvature of the curve given by r() = 2¢i + 12j — %z-‘k.

Solution:
It is not apparent whether this parameter represents arc
length, so you should use the formula K = ||T(5)]|/||r (®)].

F(t) = 2i + 2tj - £k
[eO) = V4 + 42 +P =12 +2

r'(t)  2i+2tj— 1tk

Length of r ()

=Tl =" 742
oo (12 + 2)(2f — 2rk) = (20)(2i + 21j — 1°k)
T = (12 + 2)2

112

-Jrvature

THEOREM 12.9 CURVATURE IN RECTANGULAR COORDINATES

If C is the graph of a twice-differentiable function given by y = f(x), then the
curvature K at the point (x, y) is given by

1]

114



-Jrvature

Let C be a curve with curvature K at point P. The circle
passing through point P with radius r = 1/K is called the
circle of curvature if the circle lies on the concave side of

the curve and shares a common tangent line with the curve

at point P.

The radius is called the radius of curvature at P, and the
center of the circle is called the center of curvature.

115

-ample 6 — Finding Curvature in Rectangular Coordinates

Find the curvature of the parabola given by y = x — ix2
at x = 2. Sketch the circle of curvature at (2, 1).

Solution:
The curvature at x = 2 is as follows.
X
r=1-= =
y 2 y'=0
s 1 o1
y = 75 y = 2
|\,// 1
— . K==
STENCERRE 2

-Jrvature

17

THEOREM 12.10 ACCELERATION, SPEED, AND CURVATURE

If r(z) is the position vector for a smooth curve C, then the acceleration vector
is given by

d?s ds\?
al) = 3T+ K(dl) N

where K is the curvature of C and ds/dr is the speed.

119

-<ample 6 — Solution

-Jrvature

The circle of curvature gives you the curvature K at a point
P on a curve. Using a compass, you can sketch a circle
that lies against the concave side of the curve at point P, as
shown in Figure 12.36. !

4
r = radius of

curvature

If the circle has a radius of r,
you can estimate the curvature to
be K= 1/r.

.
Center of
curvature

The circle of curvature
Figure 12.36
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cont'd

Because the curvature at P(2, 1) is % it follows that the
radius of the circle of curvature at that point is 2.

So, the center of curvature is (2, —1) as shown in
Figure 12.37.

[In the figure, note that the curve
has the greatest curvature at P.]

The circle of curvature
Figure 12.37 118

-ample 7 — Tangential and Normal Components of Acceleration

Find a; and ay for the curve given by
r(0) = 2ri + 12%j — 1 k.

Solution:
From Example 5. vou know that
ds 2
== =r+2 K=—-—-
a0 v =1 and 2 + 22
Therefore.
ayp = i =2t Tangential ¢ .
T (ltz angential mmp(vmm
and / 2 2
aN = K<i> = @+ 27 (> +2)? =2. Normal component

120



Application

121

-)plication

For example, if a car moving with constant speed is
rounding a turn, the roadway exerts a frictional force that
keeps the car from sliding off the road. If the car is not
sliding, the frictional force is perpendicular to the direction
of motion and has magnitude equal to the normal
component of acceleration, as shown in Figure 12.39. The
potential frictional force of a road around a turn can be
increased by banking the roadway.

——— ¥ 1

Force of
fiction

LA\

The force of friction is perpendicular to the direction of motion. 123

Figure 12.39

-<ample 8 — Solution

The frictional force must equal the mass times the normal
component of acceleration.

For this circular path, vou know that the curvature is

K=— Curvature of circular racetrack

12

Therefore. the frictional force is

ds\?
1ay = mK| —
may = m (dr)

1 60,000 m\?
= (360 kg)(lz m>< 3600 sec )

~ 8333 (kg)(m)/sec?.
125

-)plication

There are many applications in physics and engineering
dynamics that involve the relationships among speed, arc
length, curvature, and acceleration. One such application
concerns frictional force.

A moving object with mass m is in contact with a stationary
object. The total force required to produce an acceleration
a along a given path is

F =ma= m<df.f>T + mK(@)_N
dr? dt

= mayT + mayN.

The portion of this total force that is supplied by the
stationary object is called the force of friction.
122

-<ample 8 — Frictional Force

A 360-kilogram go-cart is driven at a speed of 60 kilometers
per hour around a circular racetrack of radius 12 meters, as
shown in Figure 12.40. To keep the cart from skidding off
course, what frictional force must the track surface exert on
the tires?

Figure 12.40 124

-)plication

SUMMARY OF VELOCITY, ACCELERATION, AND CURVATURE

Let C be a curve (in the plane or in space) given by the position function

r() = x(i + y(1)j Cu e plane
r(r) = x(n)i + y(0)j + z(Dk.
Velocity vector, speed, and V() = r’(r)
acceleration vector: ds
vl === = [Ir O Speed
dr
a(t) = r(1) = ayT(1) + ayN(r) Acceleration vector
Unit tangent vector and principal ISR () _ T
unit normal vector: 0 = [Ie @)l il Ro)= [T ()]l
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plication

Unit tangent vector and principal
unit normal vector:

Components of acceleration:

Formulas for curvature in the
plane:

Formulas for curvature in the
plane or in space:

cont'd

r(n) T

_ . _ )
T() = el and N(r)

[Tl

Cgivenby y = f(x)

C given by x = x(1), y = (1)

K= [T = 9] P
_ 01 _ 0 s 0) P
0l =T e
_al) NGO
N

Cross product formulas apply only to curves in space.
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